Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
2.
ssrn; 2023.
Preprint en Inglés | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.4319535
3.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.10.19.512927

RESUMEN

A series of SARS-CoV-2 variants of concern (VOCs) have evolved in humans during the COVID-19 pandemic: Alpha, Beta, Gamma, Delta, and Omicron. Here, we used global proteomic and genomic analyses during infection to understand the molecular responses driving VOC evolution. We discovered VOC-specific differences in viral RNA and protein expression levels, including for N, Orf6, and Orf9b, and pinpointed several viral mutations responsible. An analysis of the host response to VOC infection and comprehensive interrogation of altered virus-host protein-protein interactions revealed conserved and divergent regulation of biological pathways. For example, regulation of host translation was highly conserved, consistent with suppression of VOC replication in mice using the translation inhibitor plitidepsin. Conversely, modulation of the host inflammatory response was most divergent, where we found Alpha and Beta, but not Omicron BA.1, antagonized interferon stimulated genes (ISGs), a phenotype that correlated with differing levels of Orf6. Additionally, Delta more strongly upregulated proinflammatory genes compared to other VOCs. Systematic comparison of Omicron subvariants revealed BA.5 to have evolved enhanced ISG and proinflammatory gene suppression that similarly correlated with Orf6 expression, effects not seen in BA.4 due to a mutation that disrupts the Orf6-nuclear pore interaction. Our findings describe how VOCs have evolved to fine-tune viral protein expression and protein-protein interactions to evade both innate and adaptive immune responses, offering a likely explanation for increased transmission in humans.


Asunto(s)
Infecciones , COVID-19
4.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.03.07.481785

RESUMEN

SARS-CoV-2 spike requires proteolytic processing for viral entry. The presence of a polybasic furin-cleavage site (FCS) in spike, and evolution towards an optimised FCS by dominant variants of concern (VOCs), are linked to enhanced infectivity and transmission. Guanylate binding proteins (GBP) are interferon-inducible restriction factors that target furin-mediated processing of viral envelope proteins and limit infectivity. Here we investigated whether GBPs restrict SARS-CoV-2 infection, and whether VOCs have evolved spikes that escape restriction. We show that GBP2 and 5 interfere with cleavage of the spike proteins of Wuhan-Hu-1, Alpha, Delta and Omicron, consistent with furin inhibition by GBPs. However, while GBP2/5 restrict Wuhan-Hu-1 infectivity, Alpha and Delta escape restriction. GBP exposure in producer cells influences viral entry route into target cells, with a shift towards endosomal entry. We therefore investigated whether GBP-targeting of spike alters sensitivity to endosomal restriction factors, IFITMs. We find IFITM1, but not IFITM 2 or 3, inhibit infection of naturally-permissive epithelial cells by early-lineage SARS-CoV-2, as well as Alpha and Delta, however GBPs did not sensitise to IFITM restriction. Strikingly, we find Omicron is unique amongst VOCs, being sensitive to restriction by GBP2/5, and also IFITM1, 2 and 3. We conclude evolution of Alpha and Delta spikes have conferred resistance to GBP restriction, but this is not solely due to acquisition of an enhanced FCS. Notably, Omicron, which has evolved under different selective pressures, has selected for changes in spike that not only mediate antibody escape, and shift in cell tropism and entry, but also impact the sensitivity of Omicron to innate immunity, potentially contributing to altered pathogenesis.


Asunto(s)
Síndrome Respiratorio Agudo Grave , COVID-19
5.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.06.06.446826

RESUMEN

Emergence of SARS-CoV-2 variants, including the globally successful B.1.1.7 lineage, suggests viral adaptations to host selective pressures resulting in more efficient transmission. Although much effort has focused on Spike adaptation for viral entry and adaptive immune escape, B.1.1.7 mutations outside Spike likely contribute to enhance transmission. Here we used unbiased abundance proteomics, phosphoproteomics, mRNA sequencing and viral replication assays to show that B.1.1.7 isolates more effectively suppress host innate immune responses in airway epithelial cells. We found that B.1.1.7 isolates have dramatically increased subgenomic RNA and protein levels of Orf9b and Orf6, both known innate immune antagonists. Expression of Orf9b alone suppressed the innate immune response through interaction with TOM70, a mitochondrial protein required for RNA sensing adaptor MAVS activation, and Orf9b binding and activity was regulated via phosphorylation. We conclude that B.1.1.7 has evolved beyond the Spike coding region to more effectively antagonise host innate immune responses through upregulation of specific subgenomic RNA synthesis and increased protein expression of key innate immune antagonists. We propose that more effective innate immune antagonism increases the likelihood of successful B.1.1.7 transmission, and may increase in vivo replication and duration of infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA